NASA TM X-55955

THE LOCAL SUPERGALAXY AS THE STRUCTURED ASPECT OF A UNIVERSAL BACKGROUND OF X-RAYS

ELIHU BOLDT

SEPTEMBER 1967

GODDARD SPACE FLIGHT CENTER
GREENBELT, MARYLAND

THE LOCAL SUPERGALAXY AS THE STRUCTURED ASPECT OF A UNIVERSAL BACKGROUND OF X-RAYS

Elihu Boldt

September 1967

GODDARD SPACE FLIGHT CENTER

Greenbelt, Maryland

THE LOCAL SUPERGALAXY AS THE STRUCTURED ASPECT OF A UNIVERSAL BACKGROUND OF X-RAYS

Elihu Boldt

ABSTRACT

It is shown that Silk's model for a universal X-ray background leads to a measurable structure arising from the local supergalaxy. A telescope tuned for detecting this structure would have a field of view $\gtrsim 1$ arc degree with a resolution $\lesssim 10$ arc minutes. The ratio of the expected signal to the observed diffuse background is of the order of unity.

THE LOCAL SUPERGALAXY AS THE STRUCTURED ASPECT OF A UNIVERSAL BACKGROUND OF X-RAYS

An important application for an X-ray telescope (1,2) with a resolution of ≤10 arc minutes is the measurement of the fine structure characteristic of a universal background. Silk (3) attributes the observed background to the superposed contributions from all normal galaxies. The following discussion describes how this model leads to a measurable structure.

Definitions:

I = observed diffuse background flux (ergs/cm²-sec-sr)

 $\phi = \text{half-angle subtended by an average galaxy}$

 α = half-angle for the average field of view required to observe one galaxy

r = average galactic radius

q = X-ray power output for an average galaxy (ergs/sec)

For the situation where the observed background is the superposition of the contributions from all galaxies, it is expected that

$$I(\pi\alpha^2) = \frac{q\phi^2}{4\pi r^2}.$$
 (1)

The observed $^{(4,5)}$ X-ray background flux is

$$I = 9 \times 10^{-8} \text{ ergs/cm}^2 \text{-sec-sr}$$
 (2)

Silk⁽³⁾ estimates that the X-ray power output from our own galaxy is

$$q \simeq 10^{39} \text{ ergs/sec}$$
 . (3)

Insertion of I and q, as given by (2) and (3), into Equation (1) yields

$$\frac{\phi}{\alpha} = 6 \times 10^{-23} \,\mathrm{r} \quad . \tag{4}$$

For r \sim 3 x 10^{22} cm., this Equation (4) indicates that ϕ and α are of the same order. Hence, for the $\sim 10^{10}$ galaxies of the metagalaxy $^{(6,7)}$

$$\pi\phi^2 \simeq \pi\alpha^2 = 4\pi/10^{10}$$
 $\rightarrow \phi \simeq 4 \text{ arc seconds}$. (5)

This angular size ($\phi \simeq 4$ arc seconds) for an object of radius equal to that of our galaxy ($r \sim 3 \times 10^{22}$ cm) would correspond to a distance of $\sim 2 \times 10^{27}$ cm., comparable to the radius (R) of the metagalaxy. The fineness of this structure ($\phi \simeq 4$ arc seconds) would be difficult to detect.

The situation for the local supergalaxy⁽⁷⁾ of $\sim 10^4$ galaxies is promising as regards detectable structure. The radius (R') of the local supergalaxy is R' $\sim 2 \times 10^{25}$ cm. Therefore, the half-angle ϕ' subtended by a representative galaxy would be

$$\phi' = \frac{r}{R'}$$

$$\rightarrow \phi' \simeq 5$$
 arc minutes . (6)

The half-angle (α') for the average field of view required to observe one such galaxy is given by

$$\pi(\alpha')^2 = 4\pi/10^4$$

$$\rightarrow \alpha' \simeq 1 \text{ degree} . \tag{7}$$

Over a field of view for which $\alpha' \sim 1$ degree, it is expected that the average background (2) is achieved, corresponding to $\sim 9 \times 10^{-8} \, \mathrm{ergs/cm^2-sec-sr.}$ However, over the ~ 5 arc minutes half-angle subtended by a representitive galaxy of the local supergalaxy it is expected that the background increases by an amount

$$\Delta I \simeq \frac{q}{(2\pi r)^2} = 3 \times 10^{-8} \, \text{ergs/cm}^2 - \text{sec-sr} , \qquad (8)$$

for $q = 10^{39}$ ergs/sec and $r \approx 3 \times 10^{22}$ cm.

by

Comparing (8) with (2), it is important to note that $\triangle I$ is comparable to I. The flux (J) from a representative galaxy of the local supergalaxy is given

$$J = (\triangle I) (\pi \phi'^{2})$$

$$\rightarrow J \simeq 2 \times 10^{-13} \, \text{ergs/cm}^{2} \text{-sec.}$$
 (9)

For a spectrum of the form given by Seward et al. (4) for photons $\gtrsim 4$ keV, this energy flux (9) corresponds to $\sim 2 \times 10^{-5}$ photons/cm²-sec.

In summary, the galaxies of the local supergalaxy are expected to give a significant structure to the X-ray background, with the following features:

- i) The deviation in the flux is comparable to the general sky background.
- ii) The enhanced flux is associated with angular regions ~ 5 arc minutes, half-angle.
- iii) The average field of view required to observe one such enhanced region is ~1 degree half-angle.
- iv) The photon flux ($\gtrsim 4$ keV) anticipated from a representative galaxy of the local supergalaxy is $\sim 2 \times 10^{-5}$ photons/cm²-sec.

REFERENCES

- 1. Giacconi, R. and Rossi B., J. Geophys. Res. 65, 773 (1960).
- 2. Giacconi, R., Harmon, N. F., Lacey, R. F., and Szilagyi, Z., NASA Contractor Report NASA CR-41 (1965).
- 3. Silk, J., submitted to the Astrophysical Journal, August 2, 1967. American Science and Engineering, Inc., Publication ASE-1697.
- 4. Seward, F. D., Chadil, G., Mark, H., Swift, C., and Toor, A., Ap. J. 1967 (in the press).
- 5. Byram, E.T., Chubb, T.A., and Friedman, H., Science 152, 66 (1966).
- 6. Allen, C. W., Astrophysical Quantities, University of London (Athlone Press)
 1955.
- 7. Ginzburg, V. L., and Syrovátskii, S. I., The Origin of Cosmic Rays, Pergamon Press (Oxford) 1964.